Syndrome Specific Interventions: SSTI and Pneumonia

Trevor Van Schooneveld, MD
Associate Professor, Division of Infectious Diseases
Medical Director, Antimicrobial Stewardship Program
10/31/17
“Antimicrobial stewardship interventions have been proven to improve individual patient outcomes, reduce the overall burden of antibiotic resistance, and save healthcare dollars.” CDC Website

www.cdc.gov/getsmart/healthcare/evidence
Syndromic Stewardship

• Stewardship activities focusing on improving care for a specific infectious syndrome
 • SSTI, UTI, pneumonia, asymptomatic bacteriuria, etc.
• Addresses multiple aspects of care (bundled)
• Allows to address key decision points where choices can go wrong
 • Is this an infection?
 • What infectious syndrome is it?
 • How should I evaluate this infection using lab and imaging?
 • How should I choose empiric therapy?
 • How should I adjust therapy based on subsequent data?
 • How long should I continue therapy?
 • What can be done to prevent the infection?
Advantages of Syndromic Focus

- Multidisciplinary
- Improve diagnostic activities
- Improve therapeutic activity (empiric, definitive, duration)
- Targeted education and improved messaging
- Prevention

Reasons that Antimicrobial Courses Were Not Appropriate According to Accuracy of Provider Initial Diagnosis

<table>
<thead>
<tr>
<th>Accuracy of Provider Initial Diagnosis</th>
<th>Antimicrobial Course Appropriate</th>
<th>Incorrect Drug</th>
<th>Incorrect Dose</th>
<th>Incorrect Duration</th>
<th>Other</th>
<th>Antimicrobial Not Indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct (n = 291)</td>
<td>181 (62)</td>
<td>81 (28)</td>
<td>5 (2)</td>
<td>43 (15)</td>
<td>1 (0)</td>
<td>10 (3)</td>
</tr>
<tr>
<td>Correct, but sign or symptom rather than a syndrome or disease (n = 31)</td>
<td>2 (7)</td>
<td>6 (19)</td>
<td>1 (3)</td>
<td>1 (3)</td>
<td>1 (3)</td>
<td>25 (81)</td>
</tr>
<tr>
<td>Incorrect (n = 156)</td>
<td>6 (4)</td>
<td>21 (14)</td>
<td>1 (1)</td>
<td>5 (3)</td>
<td>0 (0)</td>
<td>131 (84)</td>
</tr>
<tr>
<td>Indeterminate (n = 22)</td>
<td>2 (9)</td>
<td>4 (18)</td>
<td>0 (0)</td>
<td>7 (32)</td>
<td>0 (0)</td>
<td>11 (50)</td>
</tr>
</tbody>
</table>

NOTE: Percentages sum to >100% because some courses involved multiple errors.
Skin and Soft-Tissue Infections Requiring Hospitalization at an Academic Medical Center: Opportunities for Antimicrobial Stewardship

Timothy C. Jenkins,1,4 Allison L. Sabel,2,3 Ellen E. Sarcone,2,4 Connie S. Price,1,4 Philip S. Mehlert,2,4 and William J. Burman1,4

Retrospective analysis of 322 SSTI

Staphylococcus aureus or Streptococci isolated from 97% cultures

(only pathogens in >70%)

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Cellulitis (N=66)</th>
<th>Cutaneous Abscess (N=103)</th>
<th>SSTI with Complicating Factors (N=153)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin</td>
<td>79%</td>
<td>73%</td>
<td>73%</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>20%</td>
<td>20%</td>
<td>17%</td>
</tr>
<tr>
<td>Beta-lactam/Beta-lactamase inhibitor</td>
<td>53%</td>
<td>65%</td>
<td>66%</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>26%</td>
<td>18%</td>
<td>33%</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>11%</td>
<td>5%</td>
<td>14%</td>
</tr>
<tr>
<td>Gram-positive therapy only</td>
<td>38%</td>
<td>33%</td>
<td>17%</td>
</tr>
<tr>
<td>Broad-spectrum Gram-negative therapy</td>
<td>61%</td>
<td>67%</td>
<td>80%</td>
</tr>
<tr>
<td>Anaerobic therapy</td>
<td>74%</td>
<td>73%</td>
<td>83%</td>
</tr>
<tr>
<td>Three or more antibiotics</td>
<td>52%</td>
<td>40%</td>
<td>48%</td>
</tr>
<tr>
<td>Median Duration Therapy (days)</td>
<td>11</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

1. Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
2. Internal Medicine Service, Division of Infectious Diseases, San Francisco General Hospital, San Francisco, California, USA
3. Internal Medicine Service, San Francisco General Hospital, San Francisco, California, USA
4. Department of Medicine, University of California, San Francisco, San Francisco, California, USA
Opportunities for Improvement

Utilization of Imaging in SSTI

<table>
<thead>
<tr>
<th>Imaging</th>
<th>Cellulitis (N=66)</th>
<th>Cutaneous Abscess (N=103)</th>
<th>SSTI with Complicating Factors (N=153)</th>
<th>Yield of Image for Deep Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any imaging</td>
<td>94%</td>
<td>69%</td>
<td>86%</td>
<td>4%</td>
</tr>
<tr>
<td>Plain film</td>
<td>94%</td>
<td>69%</td>
<td>86%</td>
<td>1%</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>42%</td>
<td>14%</td>
<td>26%</td>
<td>0.3%</td>
</tr>
<tr>
<td>CT image</td>
<td>9%</td>
<td>15%</td>
<td>17%</td>
<td>2%</td>
</tr>
<tr>
<td>MRI</td>
<td>8%</td>
<td>3%</td>
<td>9%</td>
<td>1%</td>
</tr>
<tr>
<td>CT or MRI</td>
<td>17%</td>
<td>17%</td>
<td>24%</td>
<td>NR</td>
</tr>
</tbody>
</table>

SSTI Intervention

- Multidisciplinary guideline
- Diagnosis
 - When and what labs to order
 - Discouraged use of swab cultures and imaging
- Treatment
 - Discouraged gram negative and anti-anaerobic agents
 - Empiric vancomycin only
 - Transition to oral therapy at 48-72 hours
 - Duration of therapy 7 days
- Implementation
 - Created order set
 - Educated using peer champions
 - Audit-feedback to departments by champions

Measure the Impact

Exposure to Antimicrobial Classes by Time Period

- Broad Aerobic Gram-Negative Activity: Baseline period 80%, Intervention period 60% (P<0.001)
- Anti-pseudomonal Activity: Baseline period 10%, Intervention period 5% (P=0.02)
- Broad Anaerobic Activity: Baseline period 20%, Intervention period 10% (P<0.001)

Duration of Therapy by Time Period

- <10 days: Baseline period 20%, Intervention period 10% (P<0.001)
- 10-14 days: Baseline period 30%, Intervention period 30% (P=0.83)
- >14 days: Baseline period 50%, Intervention period 60% (P<0.001)

Clinical outcomes no difference pre- and post-intervention

- Clinical failure → 7.7% vs. 7.4% (P=0.93)
- Rehospitalization → 7.7% vs. 5.1% (P=0.33)
- Median length of hospital stay → 4 vs. 4 (P=0.43)

SSTI Issues to Consider

• Specific Infection Being Treated – Cellulitis vs. Abscess

• I&D primary therapy
 • Multiple, immune suppressed, can’t drain, systemic symptoms, rapid spread or severe, lesions size?? = antibiotics
 • Targeting MRSA unless you know different
 • Mild-Moderate = TMP/SMX, doxycycline, clindamycin
 • Severe = Vancomycin, linezolid, daptomycin
• Duration therapy 5-7 days
Should we give antibiotics after incision and drainage?

Percent Clinical Cure

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>TMP-SMX</th>
<th>Clindamycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talan, et al (N=1265)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daum, et al (N=786)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Placebo vs. TMP-SMX 2 DS tabs BID**
- **Clindamycin 300mg TID**

Do we need to worry about MRSA in Cellulitis?

- Two multicenter RCT evaluating addition of TMP-SMX to beta-lactam in uncomplicated cellulitis
 - No abscess, immunosuppression, PVD, device present
- All treated with cephalexin and randomized TMP-SMX OR placebo
 - Various dosing regimens
 - Weight-based high dose cephalexin and TMP-SMX for 7-14 days
 - Traditional cephalexin and high dose TMP-SMX for 7 days

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Pallin, et al. (N=146)</th>
<th>Moran, et al. (N=496)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Cure Rate</td>
<td>85% vs. 82% (95%CI, -9.3%-15%, P=.66)</td>
<td>83.5% vs. 85.5% (95%CI, -9.7%-5.7%, P=.5)</td>
</tr>
<tr>
<td>Adverse Events</td>
<td>49% vs. 53% (P=.62)</td>
<td>41.1% vs. 36.3%, P=NS)</td>
</tr>
</tbody>
</table>

Moran GJ. *JAMA.* 2017;317:2088-96
Abscess and Cellulitis Summary

• Treat based on infectious syndrome
 • Non-purulent cellulitis → treat for strep using beta-lactam
 • Use high doses in obese or severe edema
 • Abscess → drainage alone may be adequate but increasing evidence benefit from treatment
 • Purulence present → treat for MRSA
 • Mild-Moderate = TMP/SMX or Doxy (or Clinda??)
 • Recent trials suggested no difference between TMP-SMX and Clindamycin in outcomes
 • Severe = Vancomycin or others
• Complicated infections = same as purulent infections
• Don’t routinely cover gram-negatives/anaerobes
 • Use with necrotizing fasciitis and severe DFI

Pneumonia (CAP, HCAP?, HAP, VAP)

Ventilator-Associated Pneumonia: Overdiagnosis and Treatment Are Common in Medical and Surgical Intensive Care Units

• Only 41.6% of 231 possible VAP cases determined to be VAP
• Antibiotics continued beyond day 3 in 76% without VAP (1183 DOT)

Pneumonia Opportunities

• Diagnostics
 • Procalcitonin
 • Blood and sputum culture
 • Viral and MRSA PCR
 • Urine antigens

• Treatment
 • When to treat for MDROs and use combination therapy
 • De-escalation
 • Duration of therapy

• Prevention including vaccines

Procalcitonin

- Most specific biomarker for bacterial infection currently available
- Rapidly rises (~6 hr after insult) and has a half life of 24 hours
- Multicenter, non-inferiority, randomized trial of adults with LRTI presenting to ED
 - PCT levels at admission and if antibiotics started on day 3, 5, 7

- Decreased
 - Absolute abx starts -12.2%
 - Mean duration therapy -34.8% (-3 days)
 - Abx side effects 28.1% vs. 19.9%
 - 30-day adverse events 18.9% vs. 15.4%

Diagnostic Testing Opportunities

• Blood cultures not needed in everyone
• Sputum cultures only obtained in half of patients
• Timing less than ideal
 • Gram-stain and culture can identify 80% Pneumococcal pneumonias if obtained within 12 hours of antibiotics\(^1\)
 • Median time to sputum culture = 11 hours after antibiotics\(^2\)
• Urine antigens can provide useful data
 • 474 CAP cases with 75 cases pneumococcal pneumonia diagnosed by antigen only and antibiotics adjusted in 41 based on this data\(^3\)
• Nasal MRSA PCR testing
 • NPV ranging 84% to 99%\(^4,5\)

Retrospective, observational, single-center analysis adult CAP/HCAP over 2 years (N=521)
- MDRO = MRSA, Pseudomonas, ESBL GNR, CRE, Acinetobacter, Stenotrophamonas
- 3.8% overall → 5.9% HCAP, 1.9% CAP

"Once you start you can’t stop"
- Patients with HCAP at VA hospitals over 4 years (N=9319)
 - >50% received both anti-MRSA and Pseudomonas abx
 - 6.7% had MRSA, 4.8% had Pseudomonas
 - Only 28.3% had any de-escalation by hospital day 4
- De-escalation safe and beneficial
 - Early antibiotics discontinuation in VAP with negative BAL safe with fewer superinfections and MDR pathogens
 - De-escalation was protective in multivariate analysis of hospital mortality in severe sepsis/septic shock (N=628) → OR 0.55 (0.32-0.98), P = 0.022
Case #1

- 80yo female with LVAD
- Developed cellulitis around LVAD insertion site, fever, lethargy
- WBC remained normal throughout hospital stay
- Started empirically on daptomycin 4 mg/kg/day but had not failed PO ABX outpatient or received any IV ABX
- Prescriber rationale for ABX choice: want to be more aggressive due to risk of infection traveling to heart
- Blood culture prior antibiotic remained negative; wound culture grew MRSA sensitive to clindamycin, levofloxacin, TMP/SMX, vancomycin
- Patient discharged home on TMP/SMX
Questions

What would be the best way to approach the issue?

Would a formulary restriction be best in this scenario?

What is the best way to approach the physician who is overly aggressive treating this cellulitis?
Case #2

- 39yo male presented to ED with diagnosis of sepsis
- Weight = 91.1kg, BMI 31 kg/m²
- PMHx: COPD, CAD, HTN, tobacco use
- Labs: Scr 0.7, CrCl >100 ml/min, WBC 12.6
- In ED, received pip/tazo 3.375g x 1, vancomycin 1.5g x 1
- Upon admission, continued pip/tazo 3.375g IV q8h, vancomycin 1.5g q8h for necrotizing fasciitis
- Vanco trough prior to 4th dose 42.9 (8/17); dose held and re-dosed on 8/18
- Discharged 8/18, readmitted 8/19 with renal failure, likely due to vancomycin toxicity
Questions

Does your facility allow >4g/day of vancomycin doses for empiric therapy?

What incidence of renal toxicity have you seen with combination pip/tazo and vancomycin?

Does your facility have guidelines for vancomycin dosing in obese patients?
Incidence of Vancomycin Nephrotoxicity in Obese Patients

- Retrospective review compared vancomycin nephrotoxicity based on degree of obesity
- Dosing protocol
 - Loading dose: variable
 - Maintenance dose: 15 mg/kg actual body weight (2 g/dose max)
 - Frequency: q12h if CrCl 60-120 ml/min; q24h if CrCl 30-60 ml/min

- Rate of nephrotoxicity: 8.7% non-obese; 14.3% Class I-II obesity; 26.3% Class III obesity
- ~35% in each group on pip/tazo
- Predictors: Obesity (OR 2.99), trough >20, concomitant pip/tazo therapy (OR 3.55), ICU stay, duration of therapy

Nephrotoxicity from Vancomycin + Piperacillin/Tazobactam Therapy (VPT)

- Meta-analyses
 - 14 studies: VPT vs. vanco alone (aOR 3.11)
 - 15 studies: VPT vs vanco +/- other beta-lactam (OR 3.6)

- Individual studies
 - VPT vs. vanco + cefepime:
 - 29% vs. 11%
 - VPT vs. vanco + cefepime:
 - 2.18x more likely to cause AKI
 - VPT vs. vanco alone:
 - aOR 2.48
 - VPT as independent risk factors for AKI in 4 studies
 - OR ranged from 5.36 to 2.61
Risk Factors Associated Vancomycin Nephrotoxicity

<table>
<thead>
<tr>
<th>Vancomycin Exposure Variables</th>
<th>Loading dose</th>
<th>Total daily dose</th>
<th>AUC</th>
<th>Trough level</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient-Specific Factors</td>
<td>Obesity</td>
<td>Severity of illness</td>
<td>ICU residence</td>
<td>Chronic kidney disease</td>
<td>Concurrent nephrotoxin exposure</td>
</tr>
</tbody>
</table>

Questions??